Self-assembly of the plant cell wall requires an extensin scaffold
نویسندگان
چکیده
منابع مشابه
Self-assembly of the plant cell wall requires an extensin scaffold.
Cytokinesis partitions the cell by a cleavage furrow in animals but by a new cross wall in plants. How this new wall assembles at the molecular level and connects with the mother cell wall remains unclear. A lethal Arabidopsis embryogenesis mutant designated root-, shoot-, hypocotyl-defective (rsh) provides some clues: RSH encodes extensin AtEXT3, a structural glycoprotein located in the nascen...
متن کاملSelf-assembly Mechanisms in Plant Cell Wall Components
This review on self-assembly in biological fi brous composites presents theory and simulation to elucidate the principles and mechanisms that govern the thermodynamics, material science, and rheology of biological anisotropic soft matter that are involved in the growth/self-assembly/material processing of these materials. Plant cell wall, a multi-layered biological fi brous composite, is presen...
متن کاملSelf-assembly of the cell wall
Reach out and gRab something W hen families cooperate, their effects can be far reaching, according to Suzanne Pfeffer (Stanford University, Stanford, CA) and colleagues, whose study of Rab6 and Arl1 shows that these members of different GTPase families work together to anchor a vesicletethering protein onto the Golgi. The tethering protein, GCC185, is thought to bind to transport vesicles dest...
متن کاملRole of the extensin superfamily in primary cell wall architecture.
Nearly two centuries of progress have established the major components of the plant cell wall, a composite that includes interpenetrating networks of cellulose (Payen, 1838; Schulze, 1891), microfibrils (Frey-Wyssling et al., 1948; Preston et al., 1948), pectin (Braconnot, 1825) and lignin (Payen, 1838). However, only over the last five decades has a relatively minor hydroxyproline-rich structu...
متن کاملO15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury
Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2008
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0711980105